

Введение в анализ «затраты-выгоды» Часть II

Норберто Пигнатти

Немецкая экономическая группа в Беларуси Минск, сентябрь 2016

Структура – Часть II

- 1. Количественное прогнозирование эффектов
- 2. Монетизация всех эффектов (результатов)
- 3. Дисконтирование затрат и выгод для получения текущей стоимости и расчета чистой приведенной стоимости (NPV)

4. Количественное прогнозирование эффектов на протяжении всего жизненного цикла проекта (1)

- В большинстве проектов эффекты наблюдаются длительный период времени.
- Аналитик должен делать прогнозы для всех соответствующих эффектов для различных альтернатив в каждый период времени.
- Дополнительные трудности при прогнозировании возникают, если проекты являются уникальными (нет предыдущего опыта), имеют долгосрочный горизонт или сложные взаимосвязи между переменными.

4. Количественное прогнозирование эффектов на протяжении всего жизненного цикла (2)

- Среди причин, которые усложняют прогнозы можно выделить:
 - Государственная политика и программы, направленные на изменение поведения вовлеченных в проект лиц, что может привести к неожиданным изменениям (прим. Компенсационное поведение—моральный вред лучше дороги выше скорость) [Может ли это изменить результаты? Как?]
 - Политика может воздействовать на поведение третьих сторон таким образом, что это может увеличить/снизить затраты или выгоды от данной политики (замещение или побочный эффект) [Прим. Конкуренция автомагистралей с оплатой?]
 - Для прогнозирования могут потребоваться <u>специальные знания,</u> которые <u>не определены</u>. [Прим. Эволюция метеоусловий?]

4. Количественное прогнозирование эффектов на протяжении всего жизненного цикла (3)

- Например, в случае с автомагистралью, мы должны посчитать (кроме всего прочего):
 - Общее количество сбереженных миллионов километров пробега транспортных средств (mvkm) [Платыные vs. бесплатные;
 Глобальные vs. провинциальные]
 - Общее количество пройденных mvkm, разделенное по категориям (Прим. Разделение транспортных средств по группам: автомобили, автобусы, большегрузные машины)
 - Количество сохраненных жизней (как функция от mvkm и количества)
 - Количество сохраненных часов (как функция от уменьшения в mvkm и большей скорости)
 - Уменьшение затрат на ремонт (из-за более хорошего качества дорог и более коротких расстояний)

5. Монетизация всех эффектов(1)

- Когда рынки существуют и работают хорошо можно определить денежную стоимость ресурсов и готовность платить за результаты исходя из соответствующей кривой спроса.
- Проблемы увеличиваются, когда рынки отсутствуют или работают плохо. На практике, в этих случаях (Прим. Стоимость статистической жизни, стоимость времени, ущерб от загрязнения окружающей среды, и т.д.) большинство ЗВА аналитиков опираются на предыдущие исследования (прямая оценка является затратной и трудоемкой).

Пример – часть 1:

■ Предположим, что стоимость почасовой оплаты труда для работника, строящего автомагистраль составляет 40,000 BYR. Какова будет стоимость 1,000 часов, затраченных на проект?

Пример- часть 2:

Используя приведенную ниже формулу рассчитайте, какова будет монетарная стоимость сбережений при условии, что количество часов, проведенных на перегруженных автомагистралях каждым работником, будет снижено на 1,000 часов в год, а среднечасовая заработная плата составила 40.000 BYR.?

Plug-In Category	Shadow Price Value	Comments
VTTS for Road Transportatio	n	
 Commuting or leisure travel time 	 50% of the average after-tax wage rate per hour saved 	Based on Waters (1996) and von Wartburg and Waters (2004).
Travel time paid for by employers	100% of the before-tax wage rate plus benefits per hour saved	
Time in Other Activities		
 Walking 	 2 × VTTS 	Common convention in many jurisdictions (von Wartburg and Waters, 2004).
Waiting	2. $2.5 \times VTTS$	
Congestion	3. $2 \times VTTS$	

5. Монетизация всех эффектов(2)

- Если никто не желает платить за определенный эффект (или избежать его), тогда данный эффект будет иметь нулевую стоимость в ЗВА.
- Когда попытка монетарной оценки определенного эффекта (Прим. Жизнь) проблематична, аналитик будет вынужден использовать альтернативные методы анализа, такие как анализ затраты-эффективность или многоцелевой анализ.

6. Дисконтирование затрат и выгод для определения текущей стоимости (1)

- Когда в рамках проектов затраты или выгоды проявляются в течение долгого времени, будущие выгоды и издержки должны быть дисконтированы относительно текущих выгод и затрат, для того, чтобы определить их текущее значение и провести ЗВА.
- Дисконтирование необходимо из-за:
 - Предпочтения потреблять сейчас, а не потом
 - Достижения компромисса между текущим и будущим потреблением

6. Дисконтирование затрат и выгод для определения текущей стоимости(2)

- Затраты или выгоды полученные в год t конвертируются к их текущей стоимости (PV) путем их деления на (1+s)^t, где s это социальная ставка дисконтирования.
- Пример:

Сколько я должен сберечь сегодня для получения 161 млн. BYR в течение 5 лет, если процентная ставка составляет 10%?

=100,000,000

7. Расчет чистой приведенной стоимости для каждой альтернативы (1)

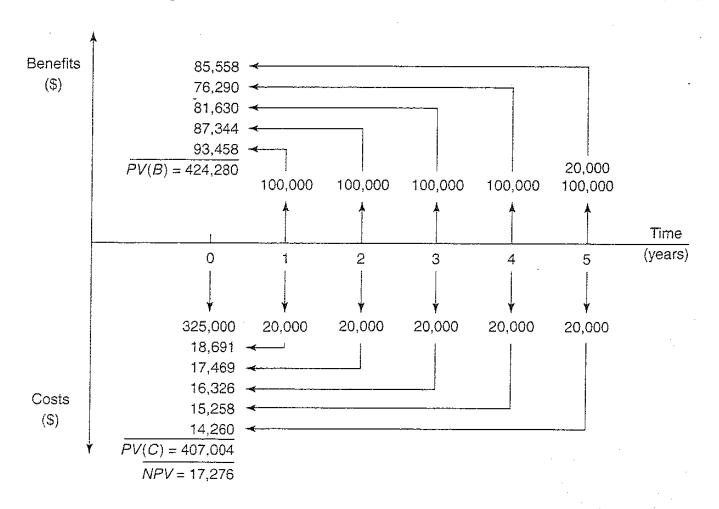
 Чистая приведенная стоимость для каждой альтернативы (NPV) рассчитывается как:

$$NPV = PV(B) - PV(C)$$

 NPV может быть перефразирована также как приведенная стоимость чистых социальных выгод (NSB)

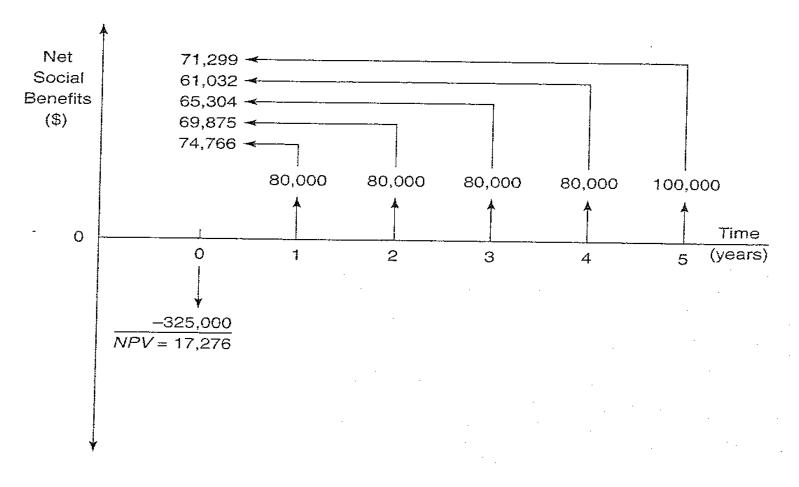
$$\Rightarrow$$
 NPV = PV(NSB)

Чистая приведенная стоимость (NPV)


■ В целом:
$$NPV = \sum_{t=0}^{n} \frac{B_t}{(1+r)^t} - \sum_{t=0}^{n} \frac{C_t}{(1+r)^t}$$

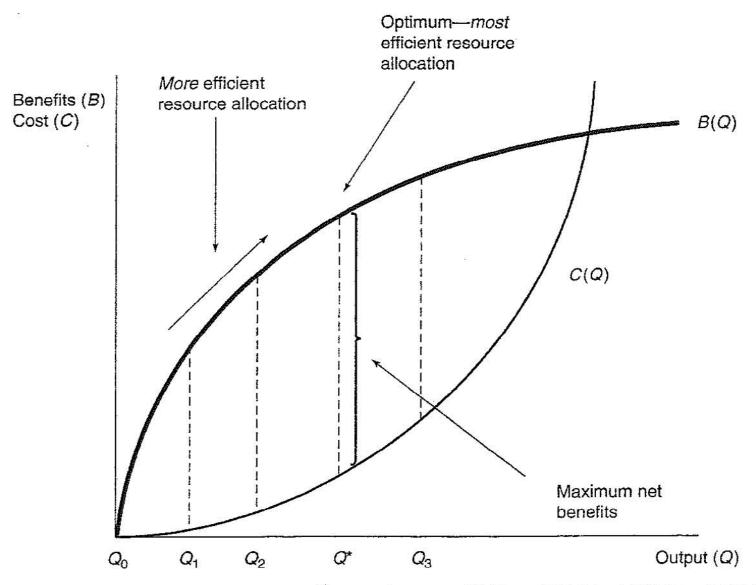
 Также NPV может быть рассчитана как PV годовых чистых выгод:

$$NPV = \sum_{t=0}^{n} \frac{NB_t}{(1+r)^t}$$



Чистая приведенная стоимость (1)

Чистая приведенная стоимость. Пример (2)


7. Расчет чистой приведенной стоимости для каждой альтернативы(2)

- Основное правило принятия решений, которое основано на расчете NPV, гласит: выбирается проект с наибольшим NPV, при условии, что хотя бы одно NPV является положительным.
- Предлагаются альтернативные правила принятия решений (Прим. Внутренняя норма прибыли (IRR); Модифицированная IRR; Доля затратывыгоды (BCR))

7. Расчет чистой приведенной стоимости для каждой альтернативы (2)

- Критерий NPV применяется только для фактических реальных альтернатив.
- По этой причине мы говорим, что хотя критерий *NPV* приводит к более эффективному распределению ресурсов, однако он совсем не обязательно рекомендует наиболее эффективное распределение ресурсов (смотри рисунок 1-1).

Moving from Q_0 toward Q^* increases efficiency; that is: $NPV(Q^*) > NPV(Q_2) > NPV(Q_1) > NPV(Q_0)$ Moving beyond Q^* reduces efficiency, but Q_3 is more efficient than Q_0 : $NPV(Q^*) > NPV(Q_3) > NPV(Q_0)$

FIGURE 1-1 CBA Seeks More Efficient Resource Allocation

7. Расчет чистой приведенной стоимости для каждой альтернативы (3)

- Аналитик может не включить оптимальное распределение ресурсов по ряду причин:
 - Недостаток информации о возможных альтернативах
 - Ограничения когнитивных способностей (проблема ограниченной рациональности)
 - Бюджетные или политические ограничения

Пример (интерактивная работа)

Проект	PVC	PVB
Α	150	300
В	70	150
С	35	100

- Предположим Вы должны выбрать только одно из нескольких альтернатив. Какой проект Вы выберите?
- Предположим теперь, что Вы можете позволить тратить только 100 (но вы можете выбрать для реализации более чем один проект). Какие (ой) из них вы бы выбрали?

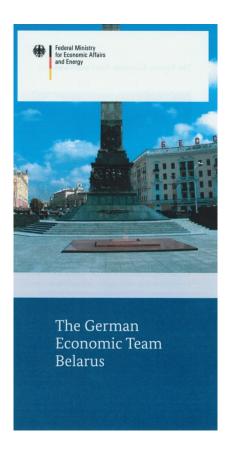
Контакты

Prof. Dr. Norberto Pignatti International School of Economics at Tbilisi State University (ISET)

n.pignatti@iset.ge

German Economic Team Belarus

c/o BE Berlin Economics GmbH


Schillerstr. 59, D-10627 Berlin

Tel: +49 30 / 20 61 34 64 0

Fax: +49 30 / 20 61 34 64 9

www.get-belarus.de

Twitter: @BerlinEconomics

